6. テーブル結合とSQLによるデータ統合

URL: https://www.kkaneko.jp/de/ds/index.html

金子邦彦

謝辞:この資料では「いらすとや」のイラストを使用しています

• アクティブな学習を実践しよう

SQLを学ぶ際に、**プログラムを変更した結果を実際に見る**ことも心がけましょう。実際のデータベース操作を通じて学習を深めます。

・簡単なスタートから

初めはシンプルなものからスタートしましょう。反復練習しましょう。

• ステップ・バイ・ステップで応用に進む

SQLスキルを向上させるために、少しずつ難易度を上げ、今まで自分ができなかったことにもチャレンジしましょう。

アウトライン

- 1. イントロダクション
- 2. 結合の基本概念
- 3. SQL での結合の書き方
- 4. 結合条件のない結合と、結合条 件のある結合

5. 演習

SQLFiddle のサイトにアクセス

Webブラウザを使用

1. ウェブブラウザを開く

2. アドレスバーにSQLFiddleのURLを入力

http://sqlfiddle.com/

3. MySQL を選ぶ

URLが分からないときは、Googleなどの**検索エンジン**を利用。 「SQLFiddle」と検索し、表示された結果からSQLFiddleの ウェブサイトをクリック。

SQLFiddle の画面

上のパネル: SQLの入力(複数可能) ・テーブル定義 CREATE TABLE ・データの追加 INSERT INTO ・SQL問い合わせ。SELECT, FROM, WHERE など

6

6-1. イントロダクション

- データをテーブルと呼ばれる表形式で保存
- テーブル間は関連で結ばれる
- 複雑な構造を持ったデータを効率的に管理することを可能

- データの整合性: リレーショナルデータベースは、デー タの整合性を保持するための機能を有する. これにより、 誤ったデータや矛盾したデータが保存されるのを防ぐこ とができる.
- 2. 柔軟な問い合わせ(クエリ)能力: リレーショナルデー タベースのSQL(Structured Query Language) (データ ベース操作言語)の使用により, 複雑な検索やデータの 抽出が可能になる.
- 3. トランザクション機能:一連の操作全体を一つの単位として取り扱うことができる機能.これにより,データの 一貫性と信頼性が向上する.
- 4. セキュリティ:アクセス権限の設定などにより, セキュリティを確保する.

データの安全な保管,効率的なデータ検索・操作,ビジネスや研究の意思決定をサポート.

SQL 理解のための前提知識

O テーブル

データを**テーブル**と呼ばれる表形式で保存

ID	商品名	単価	購入者	商品番号
1	みかん	50	Х	1
2	りんご	100	Х	3
3	メロン	500	Y	2

O 問い合わせ(クエリ)

- ・問い合わせ(クエリ)は、データベースから必要なデータ を検索、加工するための指令
- SELECT, FROM, WHERE など、**多様**なコマンドが存在。
- ・結合、集計、ソート、副問い合わせなど、高度な操作も可能

SQL によるテーブル定義

- ・テーブル名: 商品
- ・属性名:ID、商品名、単価
- ・属性のデータ型:数値、テキスト、数値
- データの整合性を保つための**制約:なし**

データ追加のSQL

	ID	商品名	単価
	1	みかん	50
商品	2	りんご	100
	3	メロン	500

INSERT INTO 商品 VALUES(1, 'みかん', 50); INSERT INTO 商品 VALUES(2, 'りんご', 100); INSERT INTO 商品 VALUES(3, 'メロン', 500);

演習1. テーブル定義と データの追加

【トピックス】

- 1. SQL によるテーブル定義
- 2. SQL によるデータの追加
- 3. 問い合わせ(クエリ)による 確認

Webブラウザを使用 ① アドレスバーにSQLFiddleのURLを入力 http://sqlfiddle.com/

② 「**MySQL**」を選択

SQL Fiddle

Welcome to SQL Fiddle, an online SQL compiler that lets you write, edit, and execute any SQL query.

Choose which SQL language you would like to practice today:

SQL Server SQLite PostgreSQL MySQL MariaDB Oracle Oracle PLSQL

③ **上のパネル**に、**テーブル定義**と**データの追加と問い合わ せ**を行う SQL を入れる。(SQLFiddleで、最初に出てくる SQLは不要なので消す)。

```
CREATE TABLE 商品 (

ID INTEGER,

商品名 TEXT,

単価 INTEGER);

INSERT INTO 商品 VALUES(1, 'みかん', 50);

INSERT INTO 商品 VALUES(2, 'りんご', 100);

INSERT INTO 商品 VALUES(3, 'メロン', 500);

select * FROM 商品;
```

④ 「Execute」をクリック SQL 文が実行され、結果が表示される。 ⑤ 下のパネルで、結果を確認。

6-2. 結合の基本概念

結合は,テーブル間の関連に基づいて複数のテーブルを1 つにまとめる操作 例:従業員テーブルと部署テーブルを結合,従業員の名前 と所属部署の名前を1つのテーブルに集める.

結合とその目的

結合は、異なるテーブルを結合して、新たなテーブルを生成 する操作

- ・主な目的:データベース内の異なるテーブルからデータを
 組み合わせて、有用なデータを作成
- ・結合条件:結合条件は通常、2つのテーブルの特定の属性 同士の値が等しいという条件を指定。その他の複雑な条件 も指定できる

結合を行うことで、データベースの柔軟性と効率性を向上。 意思決定や問題解決に役立つデータを得ることができる。

ID	商品名	単価
1	みかん	50
2	りんご	100
3	メロン	500

購入者	商品番号	
Х	1	
Х	3	
Y	2	

商品テーブルと購入テーブル

ID	商品名	単価
1	みかん	50
2	りんご	100
3	メロン	500

Xさんは、1のみかんと, 3のメロンを買った Yさんは、2のりんごを買った 購入テーブルの情報 商品テーブルの情報

ID	商品名	単価
1	みかん	50
2	りんご	100
3	メロン	500

- ・商品テーブルと購入テーブルを結
 合して、購入者がどの商品を購入
 したかのデータを取得。
- ・結合条件は、商品テーブルのID属 性と購入テーブルの商品番号属性 が等しい場合に結合

ID	商品名	単価	購入者	商品番号
1	みかん	50	Х	1
3	メロン	500	Х	3
2	りんご	100	Y	2

SELECT * FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号;

SQL による結合の基本

関連

商品番号

3

2

商品

購入

購入者

ID	商品名	単価
1	みかん	50
2	りんご	100
3	メロン	500

Х

Χ

Y

結合のための**SQL**

SELECT * FROM 商品

INNER JOIN 購入

ON 商品.ID = 購入.商品番号; 結合条件

ID	商品名	単価	購入者	商品番号
1	みかん	50	Х	1
3	メロン	500	Х	3
2	りんご	100	Y	2

結合条件に基づいて, 両テーブルのデータが 結合される.

テーブル結合の総括

- ・結合は,異なるテーブルを一つにまとめる操作で ある.
- ・結合条件は通常, テーブルの特定の属性同士の値 が等しいという条件を指定する.
- ・より複雑な結合条件なども指定できる.

演習 2. SQL による結合 【トピックス】 1. 結合 2. INNER JOIN と ON の使用

Webブラウザを使用 ① アドレスバーにSQLFiddleのURLを入力 http://sqlfiddle.com/

② 「**MySQL**」を選択

SQL Fiddle

Welcome to SQL Fiddle, an online SQL compiler that lets you write, edit, and execute any SQL query.

Choose which SQL language you would like to practice today:

SQL Server SQLite PostgreSQL MySQL MariaDB Oracle Oracle PLSQL ③ 上のパネルに、テーブル定義とデータの追加と問い合わせを行う SQL を入れ実行。(以前の SQL は不要なので消す)

```
CREATE TABLE 商品 (
   ID INTEGER,
   商品名 TEXT,
   単価 INTEGER);
INSERT INTO 商品 VALUES(1, 'みかん', 50);
INSERT INTO 商品 VALUES(2, 'りんご', 100);
INSERT INTO 商品 VALUES(3, 'メロン', 500);
CREATE TABLE 購入 (
   購入者 TEXT,
   商品番号 INTEGER);
INSERT INTO 購入 VALUES('X', 1);
INSERT INTO 購入 VALUES('X', 3);
INSERT INTO 購入 VALUES('Y', 2);
SELECT * FROM 商品
INNER JOIN 購入
ON 商品.ID = 購入.商品番号;
```

④ 「Execute」をクリック SQL 文が実行され、結果が表示される。 ⑤ 下のパネルで、結果を確認。

演習2の実行結果

ID	商品名	単価
1	みかん	50
2	りんご	100
3	メロン	500

- ・商品テーブルと購入テーブルを結
 合して、購入者がどの商品を購入
 したかのデータを取得。
- ・結合条件は、商品テーブルのID属 性と購入テーブルの商品番号属性 が等しい場合に結合

| 2 | りんご | 100 | Y | 2 |

SELECT * FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号;

結合はリレーショナルデータベースにおいて重要な操作であ り、以下の利点がある

- ・データの統合:異なるテーブルを結合して、新たなテーブルを生成。これにより、関連のあるデータを1つにまとめるデータ統合を実現。
- ・データの洞察:異なるデータを組み合わせて意思決定に役 立つ洞察を得る。
- ・データの整合性:データの冗長性を排除し、データの整合 性を保つために、テーブルを分割して、データベース内に 保持。必要に応じて結合して必要なデータを取得できる。

結合は、異なるテーブルを結合して、新たなテーブルを生成 する操作

- ・主な目的:データベース内の異なるテーブルからデータを
 組み合わせて、有用なデータを作成
- ・結合条件は、例えば、「商品テーブルのIDと購入テーブル の商品番号が等しい」というような結合条件を考えること ができる
- ・有用性:結合を利用することで、購入者がどの商品を購入 したかなどのデータを得ることができる
- 結合を行う SQL の例

SELECT * FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号;

発展学習(余裕のある人向け)

- ・目的:結合の結果をさらに加工する方法をマスターする
- ・指示: 演習の結果のテーブルは5列です。このうち、「商品 名」と「購入者」の列のみを表示し、他の列は表示しない ような(下図のように) SQL を作成してください。

・ヒント: SELECT * を変更して、必要な列のみを指定してください。

発展学習(余裕のある人向け)

- ・目的:結合の結果をさらに加工する方法をマスターする
- ・指示: 演習の結果のテーブルは、3行のテーブルです。この 行数3を得る(下図のように) SQL を作成してください

・ヒント: COUNT(*) を使用してください。

発展学習1の解答例

SELECT 商品名, 購入者 FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号;

発展学習2の解答例

SELECT COUNT(*) FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号;

6-3. SQL での結合の書き方

結合のためのSQL SELECT * FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号; **結合条件**

・商品テーブルの「ID」と購入テーブルの「商品番 号」属性が等しいという結合条件

商品.ID = 購入.商品番号

・「等しい値を持つ」という結合条件の表し方

テーブル1.属性3 = テーブル2.属性4

結合結果の絞り込みと Access 固有の SQL 制約

商品テーブルと購入テーブルを結合.特定の商品 「X」を購入したものに絞り込み

<u>SQLの世界標準</u>: INNER JOIN ... ON のあとで AND, OR が使える.

SELECT * FROM 商品

INNER JOIN 購入

ON 商品.ID = 購入.商品番号 AND 購入.購入者 = 'X';

<u>Access</u>: ON のあとで AND, OR が<u>使えない</u>. <u>AND の代替</u> <u>で WHERE を使う</u>

SELECT * FROM 商品

INNER JOIN 購入

ON 商品.ID = 購入.商品番号 WHERE 購入.購入者 = 'X';

演習3. 複数の条件の指定 【トピックス】 1. 結合 2. 複数の結合条件

Webブラウザを使用 ① アドレスバーにSQLFiddleのURLを入力 http://sqlfiddle.com/

② 「**MySQL**」を選択

SQL Fiddle

Welcome to SQL Fiddle, an online SQL compiler that lets you write, edit, and execute any SQL query.

Choose which SQL language you would like to practice today:

SQL Server SQLite PostgreSQL MySQL MariaDB Oracle Oracle PLSQL ③ **上のパネル**に、**テーブル定義とデータの追加と問い合わせ**を行う SQL を入れ実行。(**以前の SQL は不要なので消す**)

```
CREATE TABLE 商品 (
   ID INTEGER,
   商品名 TEXT,
   単価 INTEGER);
INSERT INTO 商品 VALUES(1, 'みかん', 50);
INSERT INTO 商品 VALUES(2, 'りんご', 100);
INSERT INTO 商品 VALUES(3, 'メロン', 500);
CREATE TABLE 購入 (
   購入者 TEXT,
   商品番号 INTEGER);
INSERT INTO 購入 VALUES('X', 1);
INSERT INTO 購入 VALUES('X', 3);
INSERT INTO 購入 VALUES('Y', 2);
SELECT * FROM 商品
INNER JOIN 購入
ON 商品.ID = 購入.商品番号 WHERE 購入.購入者 = 'X';
```

④ 「Execute」をクリック SQL 文が実行され、結果が表示される。 ⑤ 下のパネルで、結果を確認。

⑥ 上のパネルに、問い合わせ(クエリ)を行う SQL を追加

SELECT 商品名, 購入者, 単価 FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号 WHERE 購入.購入者 = 'X';

⑦「Execute」をクリック
 SQL 文が実行され、結果が表示される。
 ⑧ 下のパネルで、結果を確認。

- 目的: 複数の条件を指定するための AND をマスターする
- 指示:いまの演習において、次の SQL を実行したら、どのような結果になるか、予想してください。そして、実際に動作させてください

SELECT 商品名, 購入者, 単価 FROM 商品 INNER JOIN 購入 ON 商品.ID = 購入.商品番号 WHERE 購入.購入者 = 'Y';

• ヒント:購入.購入者 = 'X' でなく、購入.購入者 = 'Y' になっていることに注意

・発展学習3の解答例

6-4. 結合条件のない結合と 結合条件のある結合

- **関連性**: 異なるデータ間のつながりや対応関係を示す 例: 2つのデータセット **{1, 2, 3}** と **{a, b}** 対応関係 **1-a, 2-b, 3-a**
- ・関連性をリレーショナルデータベースのテーブルで扱うと
 き、1つの対応が、テーブルの1行になる

1	а
2	b
3	а

1つ目の列は {1, 2, 3} の要素。2つ目の列は {a, b} の要素。

テーブルを使用することで、関連性を見やすく整理し、明確にできる。

関連性 ① ③ ② - ⓒ ③ - ⓑ

49

①, ②, ③と ⑦ 間の関連性は、リレーショナルデータベースでは、 次のように示す

ID	商品名	単価	購入者	商品番号
1	みかん	50	Х	1
2	りんご	100	Y	2
3	メロン	500	Х	3

結合条件のある結合							
ID	商品名	単価		購入者	商品番号		
1	みかん	50		Х	1		
2	りんご	100		Х	3		
3	メロン	500		Y	2		

	結合	の結
結合のためのSQL(結合条件あり)	ID	商品名
SELECT * EPOM 商品		フィートン
	1	みかり
	2	りんこ
	3	XDX
UN 简 m.IU = 胂入. 简 m 留 亏; 指 合 余 件		

結合の結果

חו	商只夕	畄価	購入	商只悉
U		千四	者	号
1	みかん	50	Х	1
2	りんご	100	Y	2
3	メロン	500	Х	3

結合条件のない結合						
ID	商品名	単価				
1	みかん	50				
2	りんご	100	X			
3	メロン	500	~			
ID 1 2 3	 商品名 みかん りんご メロン 	単価 50 100 500				

購入者	商品番号
Х	1
Х	3
Y	2

結合のためのSQL(結合条件なし)

SELECT * FROM 商品 INNER JOIN 購入;

ID	商品名	単価	購入 者	商品番号
1	みかん	50	Х	1
1	みかん	50	X	3
1	みかん	50	Y	2
2	りんご	100	Х	1
2	りんご	100	Х	3
2	りんご	100	Y	2
3	メロン	500	Х	1
3	メロン	500	Х	3
3	メロン	500	Y	Э I 2

結合操作

テーブルを結合することで、新しいテーブルが生成される

<u>結合結果のテーブル</u>

- 結合結果のテーブルは、元の2つのテーブルの間の関係性
 を示している
- ・データの結合によって、関連性が1つのテーブルの中に、
 明確に示されるようになる。

結合条件の有無

・結合条件が指定されない場合、元の2つのテーブルの間の すべてのペアを含むテーブルが作成される。

演習4. 結合条件のない結 合

【トピックス】

- 1. 結合
- 2. 結合条件のない結合

Webブラウザを使用 ① アドレスバーにSQLFiddleのURLを入力 http://sqlfiddle.com/

② 「**MySQL**」を選択

SQL Fiddle

Welcome to SQL Fiddle, an online SQL compiler that lets you write, edit, and execute any SQL query.

Choose which SQL language you would like to practice today:

SQL Server SQLite PostgreSQL MySQL MariaDB Oracle Oracle PLSQL ③ 上のパネルに、テーブル定義とデータの追加と問い合わせを行う SQL を入れ実行。(以前の SQL は不要なので消す)

```
CREATE TABLE 商品 (
   ID INTEGER,
   商品名 TEXT,
   単価 INTEGER);
INSERT INTO 商品 VALUES(1, 'みかん', 50);
INSERT INTO 商品 VALUES(2, 'りんご', 100);
INSERT INTO 商品 VALUES(3, 'メロン', 500);
CREATE TABLE 購入 (
   購入者 TEXT,
   商品番号 INTEGER);
INSERT INTO 購入 VALUES('X', 1);
INSERT INTO 購入 VALUES('X', 3);
INSERT INTO 購入 VALUES('Y', 2);
SELECT * FROM 商品
INNER JOIN 購入;
```

④ 「Execute」をクリック SQL 文が実行され、結果が表示される。 ⑤ 下のパネルで、結果を確認。

6-5. 発展演習

次の情報を扱う

- ・織田 は とうふ を買った
- ・豊臣 は 納豆 を買った
- ・徳川 は 納豆 を買った

織田、豊臣、徳川に、通し番号の ID を付ける1:織田、2:豊臣、3:徳川

とうふ、納豆に、通し番号の ID を付ける 1:とうふ、2:納豆

次の2つのテーブルを扱う

	ID	n	ame	buy	
テーブル名:	1		織田		1
名簿	2		豊臣		2
	3		徳川		2
			関	連	
テーブル名:	ID		nan	าย	
食材		1	2	うふ	
		2	× i	納豆	

演習5.結合の演習 【トピックス】 1.結合 2.結合条件 3. INNER JOIN、ON

Webブラウザを使用 ① アドレスバーにSQLFiddleのURLを入力 http://sqlfiddle.com/

② 「**MySQL**」を選択

SQL Fiddle

Welcome to SQL Fiddle, an online SQL compiler that lets you write, edit, and execute any SQL query.

Choose which SQL language you would like to practice today:

SQL Server SQLite PostgreSQL MySQL MariaDB Oracle Oracle PLSQL

```
③ 上のパネルに、テーブル定義とデータの追加と問い合わせを行
う SQL を入れ実行。(以前の SQL は不要なので消す)
create table 名簿(
  ID integer,
 name text,
 buy integer
);
INSERT INTO 名簿 VALUES(1, '織田', 1);
INSERT INTO 名簿 VALUES(2, '豊臣', 2);
INSERT INTO 名簿 VALUES(3, '徳川', 2);
create table 食材(
 ID integer,
 name text
);
INSERT INTO 食材 VALUES(1, 'とうふ');
INSERT INTO 食材 VALUES(2, '納豆');
SELECT * FROM 名簿
INNER JOIN 食材;
```

④ 「Execute」をクリック SQL 文が実行され、結果が表示される。 ⑤ 下のパネルで、結果を確認。

⑥ 上のパネルに、問い合わせ(クエリ)を行う SQL を追加

SELECT * FROM 名簿 JOIN 食材 ON 名簿.buy = 食材.ID;

⑦「Execute」をクリック

SQL 文が実行され、結果が表示される。

⑧ 下のパネルで、**結果を確認**。

| ID | name | buy | ID | name ----+-----+----+----+----+---| 1 | 織田 | 1 | 2 | 納豆 | | 1 | 織田 | 1 | 1 | とうふ | | 2 | 豊臣 | 2 | 2 | 納豆 | | 2 | 豊臣 | 2 | 1 | とうふ | | 3 | 徳川 | 2 | 2 | 納豆 | | 3 | 徳川 | 2 | 1 | とうふ | ____+ _+____+ | ID | name | buy | ID | name 〒1 F 織田 F1 F1 F とうふ F | 2 | 豊臣 | 2 | 2 | 納豆 | | 3 | 徳川 | 2 | 2 | 納豆 ____+

⑨ **上のパネル**に、**問い合わせ(クエリ)**を行う SQL を追加

SELECT 名簿.name, 食材.name FROM 名簿 INNER JOIN 食材 ON 名簿.buy = 食材.ID;

①「Execute」をクリック

SQL 文が**実行**され、結果が表示される。

下のパネルで、結果を確認。

12 上のパネルに、問い合わせ(クエリ)を行う SQL を追加

SELECT 名簿.name, 食材.name FROM 名簿 INNER JOIN 食材 ON 名簿.buy = 食材.ID WHERE 食材.name ='とうふ';

¹³「Execute」をクリック

SQL 文が実行され、結果が表示される。

④ 下のパネルで、結果を確認。

15 上のパネルに、問い合わせ(クエリ)を行う SQL を追加

SELECT count(*) FROM 名簿 INNER JOIN 食材 ON 名簿.buy = 食材.ID;

16「Execute」をクリック

SQL 文が実行され、結果が表示される。

⑦ 下のパネルで、結果を確認。

まとめ

<u>SQLでの結合の書き方</u>

- ・INNER JOINとONを使用してテーブルの結合を行う
- SELECT * FROM 商品 JOIN 購入 ON 商品.ID = 購入.商品番号;
 のように書く

結合の応用

- ・結合操作を通じて, 関連ある複数のテーブルを1つのテー ブルにまとめることができる.
- ・データの絞り込みや分析が容易になる.
- ・結合条件を工夫することで, さまざまな状況に対応した データの抽出や分析が可能.

① 論理的思考と問題解決能力

テーブルの結合を学ぶことで、異なるテーブルからか ら必要な情報を組み合わせ、欲しいデータを得て、具 体的な問題を解決する能力が身につきます。この過程 で、論理的思考の能力が向上します。

② データ分析と洞察の獲得

複数のテーブルから必要な情報を得て、分析する技術 を習得します。データを用いて、より深い洞察を得て、 意思決定ができるようになります。

③ データ管理とSQLスキルの強化

結合をSQLで実行するスキルを学ぶことで、効率的に データを管理・操作するスキルが向上します。