

sp-2. Scheme の式とプログラム

(Scheme プログラミング)

URL: https://www.kkaneko.jp/pro/scheme/index.html

金子邦彦

2-1 Scheme の式 2-2 Scheme の関数 2-3 パソコン演習 2-4 課題

2-1 Scheme の式

Scheme を使ってできること

- •計算機能:
 - Scheme の式を入力すると: 計算が行われて,実行結果が表示される
- プログラム機能:
 - Scheme のプログラムを入力すると:
 プログラムが記憶され、後で何度でも実行できる

いったん, プログラムが 記憶される

Scheme の式に登場するもの

Scheme の式は,以下の組み合わせ

- •数值:
 - 5, -5, 0.5 など
- 変数名
- 四則演算子:

その他の演算子:

remainder, quotient, max, min, abs, sqrt, expt, log, sin, cos, tan

asin, acos, atan など

- 括弧
 - (,)
- 関数名
- define

- Scheme の式の例 - 四則演算 -
- •(+55)
- (+ -5 5)
- (+ 0.5 0.5)
- •(- 5 5)
- •(*34)
- (/ 8 12)

- } 負の数も扱える
 } 負の数も扱える
 - +,-,*,/が使える

実行結果の例

> (+ 5 5) 10 > (+ -5 5)0 > (+ 0.5 0.5)1 > (- 5 5) 0 > (* 3 4) 12 > (/ 8 12) 2/3

>

15:3

Unlocked not running

- 各種の演算 -

Scheme の式の例

- (remainder 100 15)
- (quotient 100 15)
- (max 3 5)
- (min 3 5)
- (abs -10)

- ;; 100 を 15 で割った剰余(=10)
- ;; 100 を 15 で割った商(=6)
- ;; 3, 5 の大きい方 (=5)
- ;; 3, 5 の小さい方 (=3)
- ;; -10 の絶対値 (=10)

>	(rema	in	lder	: 100 15)	
10					
>	(quot	ie	nt	100 15)	
6					
>	(max	3	5)		
5					
>	(min	3	5)		
3					
>	(abs	-1	.0)	式を人刀すると, 計質が行われて主ニ★わ	Z
10					6

Scheme の式の例 - 各種の演算 -

- (sqrt 2)
- (expt 2 3)
- (log 4)
- (sin 0.785)
- (cos 0.785)
- (tan 0.785)
- (asin (/ (sqrt 2) 2))
- (acos (/ (sqrt 2) 2))
- (atan 1)

;;2の平方根 √2 ;;2の3乗 (eを底とする) ;; log_4 ;; sin 0.785 ;; cos 0.785 ;; tan 0.785 三角関数の 単位はラジアン $::: \sin^{-1} \frac{\sqrt{2}}{2}$;; $\cos^{-1} \frac{\sqrt{2}}{\sqrt{2}}$

;; tan⁻¹ 1

実行結果の例

#i1.4142135623730951

> (sqrt 2)

(expt 2 3) >8 > (log 4) #i1.3862943611198906 > (sin 0.785) #i0.706825181105366 > (cos 0.785) #i0.7073882691671998 > (tan 0.785) #i0.9992039901050427 > (asin (/ (sqrt 2) 2)) #i0.7853981633974484 > (acos (/ (sqrt 2) 2))#i0.7853981633974483 > (atan 1) #i0.7853981633974483

式を入力すると, 計算が行われて表示される

「*」とあるのは、「乗算」の意味

 $(2+2)*\frac{(3+5)*(30/10)}{(3+5)*(30/10)}$

(* (+ 2 2) (/ (* (+ 3 5) (/ 30 10)) 2))

括弧が,計算の「単位」を表現

例えば: (* (+ 2 2) (/ (* (+ 3 5) (/ 30 10)) 2)) 、力する 48 が表示される

2-2 Scheme の関数

円の面積を求めるプログラム • 円の半径 r の値から, 円の面積 「(* 3.14 (* r r))」を計算

半径 r の円の面積は 3.14 r²

・プログラムは「関数」と見立てることができる ・入力と出力がある

まとめ

2-3 パソコン演習

・資料を見ながら、「例題」を行ってみる

•各自,「課題」に挑戦する

• 自分のペースで先に進んで構いません

Scheme の関数の定義

Scheme の式の実行

DrScheme の2つのウインドウ

🚯 Untitled – DrScheme						
<u>File E</u> dit <u>W</u> indows <u>S</u> how	Language S <u>c</u> heme	<u>H</u> elp				
Untitled (define)	🔍 Check Syntax 🗨	💕 Step 🖊 Exec	ute 🜔 Break)		
			<u> </u>			
				(定義)	ヨウインド	'
1			×)		
Welcome to <u>DrScheme</u> , vers	sion 103p1.		<u> </u>)		
Language: Intermediate Stu	Jent.					_
				> 美行り	ヨワイント!	ノ
1			×			
	3:3	Unlocked	not running			

DrScheme の2つのウインドウ

DrScheme の Execute ボタン

🔥 Untitled - DrScheme 📃 🗆 🗙
<u>File E</u> dit <u>S</u> how <u>Language</u> S <u>c</u> heme S <u>p</u> ecial <u>Windows</u> <u>Help</u>
Untitled (define) Step Check Syntax Execute
(define (area-of-disk r)
(* 3.14
(* r r)))
-
Welcome to DrScheme, version 203.
Language: Intermediate Student.
>
3:2 Read/Write not running

— Execute ボタン

・定義を行ったら 「Execute ボタン」を押す

→ 関数の定義内容を
 コンピュータが読み込む
 → 「実行用ウインドウ」の
 中身はクリアされる

DrScheme でのプログラム保存法

- ・何日かかけてプログラム作成したいとき
 → プログラムを保存する必要あり
- DrScheme の「Save 機能」を活用すること
 - ファイル名は「英語」で付けることを勧める

DrScheme の使用

- DrSchemeの起動 プログラム → PLT Scheme → DrScheme
 今日のパソコン演習では「Intermediate Student」 に設定
 - Language
 - \rightarrow Choose Language
 - → Intermediate Student
 - → Execute ボタン

「Intermediate Student」に設定

Language → Choose Language Intermediate Student を選択し, 「OK」をクリック

Intermediate Student 最後に Execute ボタン

例題1. 簡単な数式

• 次の Scheme の式を DrScheme の実行用ウイン ドウに入力し,実行してみる

$$(2+2)*\frac{(3+5)*(30/10)}{2}$$

• Scheme 言語で書くと:

1. 次の式を「実行用ウインドウ」で、実行しなさい

Database ?	Lab.
------------	------

×7	
Database	Jab.

例えば: (* (+ 2 2) (/ (* (+ 3 5) (/ 30 10)) 2)) を入力する 48 が表示される

よくある間違い

•「スペース(空白文字)」に意味がある

定義用ウインドウ

+, ー, *, /, sqrt, expt, remainder など の基本的な演算は, すでに, コンピュータ内 に組み込み済み

例題2. 円の面積

 ・円の半径 r から面積を求める関数 area-of-disk を書き,実行する

例) 5 → 78.5

- ・ 関数の名前: area-of-disk
- •パラメータ: r

「例題2. 円の面積」の手順

1. 次を「定義用ウインドウ」で、実行しなさい

• 入力した後に, Execute ボタンを押す

2. その後,次を「実行用ウインドウ」で実行しなさい

(area-of-disk 5)

「例題2. 円の面積」の結果(1/4)

🚯 Untitled - DrScheme
<u>File E</u> dit <u>S</u> how <u>Language Scheme Special Windows H</u> elp
Untitled Step 🔍 Check Syntax 🕹 Execute 🧶 Break
(define (area-of-disk r)
(* 3.14) (* r r)))
まず, 定義用ウインドウで
■ プログラムを編集している
3:17 Read/Write not running

「例題2. 円の面積」の結果(2/4)

「例題2. 円の面積」の結果(3/4)

51

「例題2. 円の面積」の結果(4/4)

・式の中に「関数名」 を書く

実際に,半径5 の円の面積を求める

コンピュータが行っていること

例題3. 簡単なプログラム

- 次の関数を書き、実行する
 f1:xとNから「x^N/N」を求める
 f2:xとyから「x,yのうち大きいほう」
 を求める
 - f3:xから「xを100で割った余り」を求 める
 - f4: x から 「x を100で割った商」を求め る

「例題3.簡単なプログラム」の手順

59

1. 次を「定義用ウインドウ」で, 実行しなさい

• 入力した後に, Execute ボタンを押す

(define (f1 x N) (/ (expt x N) N)) (define (f2 x y) (max x y)) (define (f3 x) (remainder x 100)) (define (f4 x) (quotient x 100))

2. その後,次を「実行用ウインドウ」で実行しなさい

¥

次は,課題に進んでください

- 関数の本体には「変数を含む式」を書くことになる
 - X^N / N
 - 2変数の式 (/ (expt x N) N)
 - x, y のうち大きいほう
 - $(\max x y)$
 - xを100で割った余り

(remainder x 100)

 xを100で割った商 (quotient x 100)

2変数の式

1変数の式

1変数の式

- ドルdから円を求める関数 d2y を作成し、実行結果を報告しなさい
 - define を使うこと
 - 1ドルは、120.53円とする

xから「10x+30」を求める関数 foo を作成し、実行結果を報告しなさい

```
解答の例:
    (define (foo x)
      (+ (* 10 x) 30))
   実行結果は次の通り、期待通りの結果を得た
    > (foo 10)
    130
    > (foo 20)
    230
```

```
(あくまでも解等の例です)
```


- ここにあるのは「間違い」の例です. 同じ間 違いをしないこと
- 「かっこ」の間違い
 2. 関数の書き方の間違い

define (d2y d) (* 120.53 dollar)

- ⇒ 全体をかっこで囲むこと
- 2. 変数名の対応の間違い

(define (d2y dollar) (* 120.53 d))

⇒ 変数名 d と dol I ar は どちらか 1 つにそろえること

(define (d2y) (* 120.53 d))

- ⇒ d2yの後に d が必要
- 4. 関数名の付け方の間違い

(define (d 2 y d) (* 120.53 d))

⇒ 「d2y」では無く, 「d2y」と書くこと 66

- 摂氏(Celsius) c から華氏 (Fahrenheit)を求める関数 c2f を作成 し,実行結果を報告しなさい
 - define を使うこと
 - 摂氏と華氏の変換式: c=5×(f-32)/9

- 元利を求める関数 interest を作成し,実行結
 果を報告しなさい
 - define を使うこと
 - 元利の計算式:

「元利 = 元金 × (1 + 年利)^{年数}」

作成した関数を実行し、元金1000円、年利
 2%での、50年後の元利を報告しなさい

次の計算を行う Scheme の式を書き、 「DrScheme の実行用ウインドウ」で実行して、実行結果を報告しなさい

```
5 + 5
-5 + 5
3 * 4
8/12
(2+2) * (((3+5) * (30 / 10)) / 2)
3 + 4.5
2の平方根
3の5乗
356を4で割った余り
7の対数
                (但し, e を底とする)
                (0.7865 はラジアン)
sin (0.7865)
```