

or-14. 総合演習① (オペレーションズリサーチ)

URL: https://www.kkaneko.jp/cc/or/index.html

総合演習を行う

- ・待ち行列
- 線形計画法

14-1. 待ち行列シミュレーション を行うオンラインサイト

- 人
 窓口,売り場
- もの

車の渋滞, 倉庫への預け入れと取り出し

• 情報

インターネットのパケット オペレーティングシステムのプロセス

サービスの所要時 間も**ランダム**

サービスの所要時 間も**ランダム**

到着

サーバは

1個

今から行う待ち行列シミュレーション

② シミュレーションのために, サービス時間の平均,到着間隔の平均を設定する

実データをもとに設定

次の実データでは, サービス時間の平均 97.78 到着間隔の平均 59.54

客番号		到着間隔	サービス時間	対数サービス時間
	1	25	40	3.6889
	2	170	37	3.6109
	3	101	168	5.1240
	4	308	58	4.0604
	5	27	89	4.4886
	6	2	52	3.9512
	7	31	60	4.0943
	8	80	59	4.0775
	9	29	133	4.8903
1	0	16	42	3.7377
1	1	21	113	4.7274
1	2	16	27	3.2958
1	3	37	60	4.0943
1	4	88	190	5.2470
1	5	121	72	4.2767
1	6	76	58	4.0604
1	7	201	48	3.8712
5	0	104	54	3.9890
平均	Ι	59.54	97.78	4.349
分散		4019.41	5895.53	0.4366

www.comp.tmu.ac.jp/yamashita/lec/managementscience2015.pptx より

ウェブブラウザを起動する edge を推奨 次の URL を開く

https://www.supositorio.com/rcalc/rcalclite.htm

③ 「M/M/C」をクリック

④ M/M/2 のシミュレーション.次のように設定

2. Input all the values required.

サービス時間の平均は 97.78

到着間隔の平均は 59.54

⑤ 「Calculate」をクリックすると, 結果が出る

今度は、次のように設定 サーバは1個に、 サービス時間の平均は、さっきの半分に、

Required values

2. Input all the values required.

サーバは1個

サービス時間の平均は 48.89

到着間隔の平均は 59.54

⑦ 「Calculate」をクリックすると, 結果が出る

サーバの個 数	サービス時間 の平均	到着間隔 の平均	待ち行列の 平均長さ
2	97.78	59.54	3.3992
1	48.89	59.54	3.7695

①サーバが2個 ②サーバは1個、性能は2倍

①の方が,待ち行列の平均長さが短い. 待たせずに済みそう

⑧ 今度は,次のように設定 客が20%減 (到着間隔は 1.25倍) 2. Input all the values required.

サーバは **1**個

サービス時間の平均は **48.89** 到着間隔の平均は **74.425**

⑨「Calculate」をクリックすると、結果が出る

サーバの個 数	サービス時間 の平均	到着間隔 の平均	待ち行列の 平均長さ
2	97.78	59.54	3.3992
1	48.89	59.54	3.7695
1	48.89	74.425	1.2577

客が20%減っただけで、待ち行列が約1/3になる

14-2. Excel のソルバーと 線形計画法

・線形計画法の機能を持つ

•「変数が整数である」という制約を扱う機能も持つ

Excel のアプリ版での前準備

Excel で,ファイル,オプション,アドインと操作 Excel アドインで,「ソルバーアドイン」を選び「設定」

基本設定	Microsoft Office のアドインの表示と管理を行います	đ.	
数式		2 0	
	アドイン		
データ	夕前▲	悼所	插粘
文章校正	アクティブなアプリケーション アドイン	1/1024	1'里大只
	分析ツール	C:¥ice¥root¥Office16¥Library¥Analysis¥ANALYS32.XLL	Excel アドイ
保仔		, ,	
言語	アクティブでないアプリケーション アドイン		
	Euro Currency Tools	C:¥oft Office¥root¥Office16¥Library¥EUROTOOL.XLAM	Excel アドイ
簡単操作	Inquire	C:¥86)¥Microsoft Office¥Office16¥DCF¥NativeShim.dll	COM アドイン
洋細設定	Microsoft Actions Pane 3		XML 拡張バ
	Microsoft Power Map for Excel	C:¥Power Map Excel Add-in¥EXCELPLUGINSHELL.DLL	COM 7/F12
リボンのユーザー設定	Microsoft Power Pivot for Excel	C:¥Pivot Excel Add-in¥PowerPivotExcelClientAddIn.dll	COM 751
カイッカ マカヤマ ツール バー		C: #r View Excel Add-In#AdHockeportingExcelClient.dl	Excel 751
		C·¥ on Files¥Microsoft Shared¥Smart Tag¥MOFL DU	上入CEI / TAT
アドイン	分析ツール - VBA	C:¥¥root¥Office16¥Librarv¥Analysis¥ATPVBAEN.XLAM	Excel アドイ
		, ,	
セキュリティ センター	ドキュメント関連アドイン		
	ドキュメント関連アドインはありません		
	無効なアノリケーション アドイン		
	無効なアプリケーションアドインはのりません		
	アドイン: ソルバー アドイン		
	発行者:		
	互換性: 互換性に関する情報はありません		
	場所: C·¥Program Files¥Microsoft Office¥root¥Off	Fice16¥Library¥SOLVER¥SOLVER XLAM	
	説明: 最適化に関する数学的な手法を用いて、指定された	節囲で最善の解を求めます	

OK キャンセル

③「**ソルバ―アドイン**」をチェックし「**OK**」

- 変数 x と y (<u>x と y</u> は<u>整数</u>である)
- 制約

これら制約のもとで x + y の最大値 はいくらか?

① **変数の個数は 2個(2変数)**なので → 2行使う. 分かりやすくすために A1 と A2 に, 変数名 X, Y を書く

② セル C1, C2, D1, D2, E1, E2 に値を書く

縦横入れ替え

=SUMPRODUCT(C1:C2, \$B1:\$B2)

	А	В	С
1	Х		3
2	Y		1
3			0

3x+1y になる予定

その結果,次のようになる セル D3: =SUMPRODUCT(D1:D2,\$B1:\$B2) セル E3: =SUMPRODUCT(E1:E2,\$B1:\$B2)

	Α	В	С	D	E
1	Х		3	1	1
2	Y		1	2	1
3			0	0	0
Л			1	x + 2 y	1 1

1x+2y1x+1yになる予定になる予定

⑤ Excel で線形計画法の設定を開始

- ・セルB1からB2を範囲選択してから,
- 「データ」→「ソルバー」と操作
- •まず,次のように設定.

バーのパラメーター			×
目的セルの設定:(工)	\$E\$3		Ţ
目標値: 💿 最大値	〔 <u>(</u> M) ○ 最小値 <mark>(」 ○ 旧上爬 · (」</mark>	0	
を数でルの友史、(D) \$B\$1:\$B\$2	1		Ţ
制約条件の対象:(<u>U</u>)			
			追加(<u>A</u>)
	N		変更(<u>C</u>)
	4		削除(<u>D</u>)
			すべてリセット(<u>R</u>)
		•	読み込み/保存(L)
🔽 制約のない変数を	非負数にする(<u>K</u>)		
解決方法の選択: (E)	GRG 非線形	~	オプション(Ⴒ)
解決方法 滑らかな非線形を示 ス エンジン、滑らかで	すソルバー問題には GRG 非線形エンジン、線形 はない非線形を示すソルバー問題にはエボリューシ	を示すソルバー ョナリー エンジン	問題には LP シンプレック シを選択してください。
ヘルプ(日)		解決(<u>S</u>)	閉じる(<u>O</u>)

\$R\$1	٠ŚF	3\$2
ריטל	ү L	ͻͺͻͺϲ

制約条件を追加. 「**追加**」をクリック.

ربر ارب	ルバーのパラメーター			×				
	目的セルの設定:(工)	\$E\$3		Î				
	目標値: 🔵 最大値(<u>M</u>)	○ 最小値(№ ○ 指定値:(⊻)	0					
	変数セルの変更:(<u>B)</u>							
	\$B\$1:\$B\$2			T				
			▲ 追加(変更(削除(A) C) D)				
制約条件の	追加				×			
セル参照:(<u>E)</u>		制約条	件:(<u>N</u>)	-			
\$C\$3		<u> </u>	~ 10		1	\$C\$3	<=	10
<u>O</u> I	K	追加	(<u>A</u>)	++>	ノセル(<u>C</u>)			
]	「追加」を	クリック	,	制約3 3 x	ैर +y ≦ 1	.0	29

⑦ **x** + 2 y ≦ 4 についての 制約条件を追加. 「**追加**」をクリック.

制約条件の追加		×	
セル参照:(<u>E</u>)	1 ▲ 4	-:(<u>N</u>)	\$D\$3 <= 4
<u>K</u>	< <= ♥ Ŧ	キャンセル(<u>C</u>)	ΥΥΥ
	「追加」をクリッ	ク 制約式 x + 2 y	• ≦ 4

⑧ x, y は整数であるという 制約条件を追加. 「追加」をクリック.

⑨制約条件の追加を終わる. 「キャンセル」をクチー リック.

「キャンセル」をクリック

Х

J	J	VI	ľ–	ത	パラメ	-9-

目的セルの設定:(工)		\$E\$3			1
目標値:) 最大値((<u>M</u>) 〇 最小値(<u>N</u>	〇 指定値:(<u>\</u>	<u>√</u>) 0		
変数セルの変更:(<u>B</u>)					
\$B\$1:\$B\$2					1
制約条件の対象:(U)					
\$B\$1:\$B\$2 = 整数 \$C\$3 <= 10					追加(<u>A)</u>
\$D\$3 <= 4					変更(<u>C)</u>
					削除(<u>D)</u>
					すべてリセット(<u>R</u>)
				v	読み込み/保存(<u>L</u>)
☑ 制約のない変数を	非負数にする(<u>K</u>)				
解決方法の選択: (E)	GRG 非線形			\sim	オプション(P)
解決方法					
滑らかな非線形を示す スエンジン、滑らかで(すソルバー問題には GF はない非線形を示すソ	RG 非線形エン: ルバー問題には	ジン、線形を示す エボリューショナリー	・ ソルバー問題 - エンジンを注	夏には LP シンプレック 選択してください。
			ልፖንንቲ /		問(** 7 (0)
ハルノ(日)				<u>>)</u>	闭しる(<u>U</u>)

⑪ 結果を確認

- 変数 x と y (<u>x と y</u>は<u>整数</u>である)
- •制約

3x + y ≦ **10** x + **2**y ≦ **4** これら制約のもとで

x + y の最大値は 3

14-3. 変数の数が 3 の場合

線形計画法の例題

- 変数 X と Y と Z (X と Y と Z は整数である)
- •制約式

 $2X + 3Y + 4Z \leq 20$ $3X + 4Y + 2Z \leq 25$ $5X + 2Y + 2Z \leq 24$ • これら制約のもとで X + Y + Z の最大値

はいくらか?

① **変数の個数は 3個(3変数)**なので → 3行使う. 分かりやすくすために A1 と A2 と A3 に,変数名 X, Y, Z を書く

② 次のように値を書く

縦横入れ替え

C4	•	×	fx		
A	В	С	D	E	F
1 X			2 3	5 5	1
2 Y			3 4	. 2	1
3 Z			4 2	2 2	1

38

③ セル **C4** に次の式を書く <u>変数の個数は 3個(3変数)</u>である

=SUMPRODUCT(**C**1:**C3**, \$B1:\$B**3**)

		А	В	С	D	数 式 八 一 E	F
	1	Х		2	3	5	1
e	2	Υ		3	4	2	1
	3	Z		4	2	2	1
	4			0			

- その結果,次のようになる
- セル D4: =SUMPRODUCT(D1:D3, \$B1:\$B3)
- セル E4: =SUMPRODUCT(E1:E3, \$B1:\$B3)
- セル F4: =SUMPRODUCT(F1:F3, \$B1:\$B3)

F12 \bullet : \times \checkmark f_x									
		А	В	С	D	E	F		
1	Х			2	3	5	1		
2	Y			3	4	2	1		
3	Ζ			4	2	2	1		
4				0	0	0	0		
F									

⑤ セル B1 から B3 を範囲選択してから,

「**データ**」→「ソルバー」と操作し次のように 設定.「解決」をクリック

線形計画法の例題

- ⑥ 結果の確認
- XとYとZは整数である
- •制約式

2X + 3Y + 4Z ≦ 20 3X + 4Y + 2Z ≦ 25 5X + 2Y + 2Z ≦ 24 • これら制約のもとで X + Y + Z の最大値は 7 (X=2, Y=2, Z=1 のとき)

	А	В	С	D	E	F
1	Х	2	2	3	5	1
2	Υ	4	3	4	2	1
3	Z	1	4	2	2	1
4			20	24	20	7
_						

14-4.線形計画法の演習問題

• あるレストランの手持ちの材料 ひきにく 3800 玉ねぎ 2100 ケチャップ 1200 • ハンバーグとオムレツに必要な材料 ハンバーグ1個あたり ひきにく 60, 玉ねぎ 20, ケチャップ 20 オムレツ1個あたり ひきにく 40, 玉ねぎ 30, ケチャップ 10 ・ハンバーグは **400**円, オムレツは **300**円である. 売り上げ を最大にしたい

線形計画法の例題1

- ・変数 X と Y (2変数)
- •制約式

60X + 40Y ≦ 3800 20X + 30Y ≦ 2100 20X + 10Y ≦ 1200 • これら制約のもとで 400 X + 300 Y の最大値 はいくらか ?

X=30, Y=50 のとき 最大 27000

	А	В	С	D	E	F	
1	Х	30	60	20	20	400	
2	Υ	50	40	30	10	300	
3			3800	2100	1100	27000	

ある工場の手持ちの材料 ねじ 36 板 12

• 机と椅子に必要な材料 机1つあたり ねじ 6,板 1 椅子1つあたり ねじ 3,板 2 ・机は **4**万円,椅子は **3**万円である.売り上げ を最大にしたい

- ・変数XとY (2変数)
- •制約式

6X + 3Y ≦ 36 X + 2Y ≦ 12

• これら制約のもとで

40000 X + 30000 Y の最大値

はいくらか?

X=4, Y=4 のとき

最大值 280000

С Ε А В D 1 X 6 1 40000 4 2 Y 3 2 30000 4 3 36 12 280000